Mechanical Properties of Materials, MH2032, 6hp

Course PM for 2020

Teachers

Examiner:	Stefan Jonsson	(SJ)	070-290 84 04	jonsson@kth.se
Administrator:	Anders Eliasson	(AE)	08-790 72 55	anderse@kth.se

Schedule (updated 2020-10-20), Le = Lecture, Ex = Exercise

All activities will by online through ZOOM and will be recorded. There will be a combination of pre-recorded and live activities. The recordings will be found at play.kth.se. The ZOOM meeting IDs are given in the table below. The full invitations are also given in a word document on Canvas.

Table 1Activities in chronological order

Date	Time	Meeting ID	Activity	Subject
Oct 27	10-12	657 1254 8187	Le1	Plastic deformation
Oct 29	13-15	615 8371 1179	Le2	Plastic deformation
Nov 3	10-12	690 4418 4474	Le3	Dislocation theory
Nov 5	14-16	662 7179 8236	Le4	Dislocation theory/Hard mech.
Nov 10	10-12	654 3707 4721	Le5	Hardening mechanisms
Nov 12	13-15	636 0746 8752	Le6	Hardening mechanisms
Nov 18	08-10	Digital	Quizz	Quizz
Nov 19	13-15	657 2700 8383	Ex1	
Nov 24	10-12	615 5943 5309	Le7	Static fracture
Nov 25	15-17	646 2521 4372	Ex2	
Nov 26	13-15	667 0554 6778	Le8	Fatigue
Dec 1	10-12	686 9557 9993	Ex3	
Dec 3	13-15	654 4586 3213	Le9	Creep
Dec 3	24.00			Hand in report for SEM1
Dec 8	10-12	653 7575 8586	Le10	Questions from students
Dec 10	13-16	651 7533 4035	SEM	Seminar
Jan 15	08-13	Digital	TENA	Exam

An updated schedule is found at:

https://www.kth.se/social/course/MH2032/calendar/

Syllabus

The course covers basic concepts of the mechanical properties of *metals*. Plastic deformation, from continuum- and crystal plasticity perspectives, are followed by basic descriptions of dislocation properties, which are used for describing the hardening mechanisms. Then, follows; basic knowledge of static fracture, ductile and brittle fracture which is developed further in a chapter on fatigue. Finally, strain ageing and creep are covered.

Course goals

After the course, the students should be able to:

- 1. Explain the basic principles of deformation of metals
- 2. Explain the basic principles of fracture in metals and recognize typical fracture surfaces.
- 3. Apply basic models for the description of mechanical properties.
- 4. Evaluate the impact of mechanical properties of metals.

Course goal 1	"deformation", includes plastic deformation, deformation mechanisms, dislocation theory, hardening mechanisms, strain ageing and creep.
	dislocation theory, hardening mechanisms, strain ageing and creep.
Course goal 2	"fracture", includes static fracture and fatigue.
Course goal 3	"modelling", includes modelling of mechanical properties.
Course goal 4	includes the seminar.

Examination (According to LADOK)

•	INLA	Voluntary hand-in problems, 0hp	Grades: E, FX, F
•	KON1	Voluntary quiz, 0hp	Grades: A, B, C, D, E, FX, F
•	SEM1	Seminar, 2.0 hp	Grades: P,F
•	TENA	Exam, 4.0 hp	Grades: A, B, C, D, E, FX, F

INLA examines the basic level for modelling and is voluntary. If you have passed INLA you have grade E on modelling.

KON1 examines deformation, except strain ageing and creep, and is voluntary. The grade received at KON1 is transferred to the exam. See further below.

SEM1 is examined at a seminar when a chosen task is presented. The presentation should include relevant information and be correct. A written report should be handed in 1 week before the presentation showing what is going to be presented. Normally, this includes a few pages of text and some figures. *In order to pass*, it is necessary that the student (or group of students) understands the task, is prepared and presents the issue clearly. Relevant figures should be included in the presentation and written report. The assignment requires that necessary sources of information are searched and studied. The most relevant information about the subject should be presented to the class. It is very nice if you could put the context of your subject into a relevant example, or show examples of observations or plausible effects of the studied phenomenon.

TENA consists of two parts, written after each other. Part 1, 2h, is <u>without aids</u> and examines deformation and fracture. Part 2, 3h, <u>includes aids</u> and examines modelling. The approved aids of part 2 include material that is generally available for an engineer, i.e. calculator, books (including the course compendium), formula handbooks (including the course's collection of

Materialvetenskap, KTH

formulae). However, it is *not allowed* to bring solutions to exercises, old exams, hand-in problems and so on, or private notes.

Digital examination in Canvas will be used for KON1 and TENA. It will then be possible to use programs like Excel and Matlab to construct diagrams and make calculations. It will also be possible to solve the problems and to make sketches on a piece of paper. Then the papers are to be photographed by a mobile phone and uploaded.

The course grade is given when <u>all</u> course goals (1-4) are passed and is based on the number of points received from course goals 1-3. The situation is explained from the table below. There are 9 questions, Q1-Q9 divided on the different course goals.

KON1 and TENA(1) (closed part of exam) have Q1-Q3 and the best result is counted. Hence, a good result of KON1 makes it unnecessary to answer Q1-Q3 in the exam. However, Q4 must be answered. The sum, S1, of Q1-Q4 is tested against the requirements of FX and E. It should be emphasized that Q1-Q3 will all be about deformation but that different subthemes are likely to appear in KON1 and TENA(1).

Q5 and Q6 are only tested in TENA(1) and their sum, S2, is tested against the requirements of FX and E.

CG3 can be passed (E) in two ways: 1) by handing in solutions to five problems (5x5=25p) or 2) by getting the sum, $S3 \ge 25$, of Q7-Q9 in the closed part of the exam, TENA(2), where aids are allowed.

CG4 is passed when an appropriate report has been handed in and the selected subject has been presented during a seminar.

When course goals 1-4 are passed, the course is passed with grade E.

When the grades on the advanced level, A-D, are considered, half of the points from KON1 will be given as a bonus. The maximum grand total of points will then be 108. The grades will be given as a percentage of this number, as indicated in the bottom row of the table. It should be emphasized that slight adjustments may be needed, for instance when a question is misleading or in error, or if the questions appear to have been a bit too difficult.

	CG1, deformation			CG2, f	racture	GC3, modelling			CG4	
Questions	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	
KON1	8	8	8							
INLA							5x5=25			
SEM										Р
TENA(1)	8	8	8	8	8	8				
TENA(2)							16	16	16	
	Best of	KON1 an	d TENA							
Sums	S1		S	2	S 3					
S≥FX/E	FX14 E16		FX7	7 E8	FX22 E25					
	Fulfilling all above CGs gives grade E									
Bonus	1/2 of KON1									
Max	$4 \cdot 8 + 0.5 \cdot 3 \cdot 8 = 44$		1	6	48					
Grand tot	44 + 16 + 48 = 108									
Grade	A 90%, B 80%, C 70%, D 60 % (A97, B86, C75, D65)									

Table 2Examination overview showing the maximum points

Materialvetenskap, KTH

The points will not be reported, but rather used for creating a grade. They will be communicated to the course participants.

Complimentary work

It is possible to hand in hand-written (scanned and Emailed is OK) solutions to the exam problems where FX was given. If F is received on SEM1, you have to hand in a new report and make an agreement with the examiner for a new presentation.

Seminar

Each student, or pair of students, choses a subject from the list available on Canvas. A written report should be handed in by Email to jonsson@kth.se. Note the dead line for handing in the report, listed in the schedule, above. Naturally, the expectations of the report and presentation are bigger for a group of students, than for a single student. As we have 3h for the seminar, a one-person presentation must be limited to about 6min.

Course material

Compendia	Mechanical Properties of Metals and Dislocation Theory from an Engineer's
Paper copies	Perspective, S. Jonsson.
available on	
request	
Canvas	Compendia and all other materials

Any other business

Suggestions for improving the course are most welcome. Please tell me about errors or ambiguities that you find in the course material by sending an email to Stefan Jonsson, jonsson@kth.se.

With reservations for typing errors. Please, tell me about any ambiguities in the text.

2020-10-26, Stefan Jonsson