Version 1.3

24 May 2018



# EH2745 Computer Applications in Power Systems

# Introductory course

# **Course Memo**

4,5 ECTS credits

## Overview

Efficient planning, operation and control of electric power systems is completely dependent on well-functioning computer systems. A key function in these systems is the ability to analyse large amounts of data. Such analysis needs to be done both in off-line situations to optimize dispatch of generation, forecast production of RES, plan grid expansions and understand customer behaviour, but also in real-time to identify faults and risks of instability as well as decision support for automatic grid reconfiguration. For all these applications, the analysis of large amounts of high quality data – popularly known as Big Data – is critical for providing necessary support for decision-making or automated control actions.

# **Course Objectives**

The aim of the course is to train the students in developing computer systems for advanced planning, operation and control of electric power systems. On completion of the course, the student will be able to:

- Develop a Java application
- Analyze the need for information exchange and suggest appropriate information models and protocols.
- Create consistent information models for power systems control.
- Develop a database to store essential information about power system.
- Describe a group of machine learning algorithms applicable in power systems
- Define and implement a suitable machine learning algorithm for identification of power system states.

### Prerequisites

EH2741 Communication & Control in Electric Power Systems (recommended)

### **Course Structure**

The course consists of three blocks: Software development in Java, power system data modelling and machine learning. The software development block runs throughout the course and forms the basis for the two other blocks.



Software Development in Java starts from the basics of Java programming and introduces the student to software development in Java including aspects such as file input/put, XML parsing, and integration with databases.

*Power System Data modelling* is focused on modelling of power system data according to the Common Information model making it amenable for analysis in computer applications.

*Machine learning* finally, provides an introduction to simple techniques and algorithms focused on analysing large amounts of data such as for example measurements from power systems.

#### Lectures and Exercise sessions

The course consists of a total of an introductory lecture, 17 combined lecture and exercise sessions and one final voluntary test. Since the course is applied, there is a need to mix theory and practice (programming) to facilitate learning and provide the hands-on experiences needed to learn software development. Most of the scheduled 2 hours sessions are therefore split between lecture time and exercise time in the classroom.

In addition to the combined lecture and exercise sessions, there are voluntary project hours are arranged. These are not scheduled, but during these hours the course lab is open for use and course assistants are present to assist in the work.

#### Course examination & Project Assignment

The course examination consists of two project assignments involving development of two small power system applications. Passing both assignments is necessary to pass the course. Passing the assignments provides the student with the grade of E. For higher grades, it is necessary to sit the final voluntary test.

In Project Assignment 1 the students will develop a small power system model, export it as a CIM-XML file and finally import it into a Relational database where it will be stored for later analysis.

Project Assignment 2 involves developing a Machine learning algorithm to analyse stored power system data in order to identify power system states.

Both of the assignments are to be developed in Java, and are to be done in groups of one or two students.

Finally, the voluntary test covers the theoretical concepts covered in the course. The test is individual.

# Course Administration

All course materials can be downloaded at from Canvas and project assignments must be submitted to preliminary specified storage before 21.00 the corresponding due dates. Course updates, schedule changes etc. will continually be posted on the Canvas, please check regularly.

## Course Schedule

| Date, Time             |       | Description                               | Reading | Teacher |
|------------------------|-------|-------------------------------------------|---------|---------|
| Monday                 | L1    | Course Introduction                       |         | LN      |
| 19 March               |       | Power System Information                  |         |         |
| 15 – 17                |       | Data Analysis                             |         | FG      |
| Q11                    |       | Development Environment Setup             |         |         |
| Tuesday                | L2    | Java Programming I                        |         | LN      |
| 20 March               | 112   | <ul> <li>Syntax and datatypes</li> </ul>  |         |         |
| 13 - 15                |       |                                           |         | FG      |
| Q11                    |       | • Expressions and method                  |         |         |
|                        |       | Java Programming Hands-on I               |         |         |
| Thursday               | L3    | Java Programming II                       |         | LN      |
| 22 March               |       | Classes and inheritance                   |         |         |
| 13 – 15                |       |                                           |         | FG      |
| Q11                    |       | Java Programming Hands-on II              |         |         |
| Monday                 | L4    | Java Programming III                      |         | LN      |
| 26 March               |       | <ul> <li>Execution flow, loops</li> </ul> |         | FO      |
| 15 – 17                |       | • Arrays                                  |         | FG      |
| Q11                    |       |                                           |         |         |
| Tuesday                | L5    | Java Programming Hands-on III             |         | LN      |
| 27 March               | LJ    | Java Programming IV                       |         |         |
| 13 - 15                |       | • Exceptions                              |         | FG      |
| Q11                    |       | • Input & output                          |         | 10      |
|                        | Ex1   | Java Programming Hands-on IV              |         | LN      |
| Wednesday<br>29 March  | I:XI  | Java Programming Exercise                 |         | LIN     |
| 13 - 15                |       | • Recap of Java III and Java IV           |         | FG      |
| B21                    |       |                                           |         | 10      |
| Monday                 | L6    | Java Programming V                        |         | LN      |
| 9 April                |       | • XML files                               |         |         |
| 15 -17                 |       | Java Programming Hands-on V               |         |         |
| Q11                    |       | J                                         |         |         |
| Tuesday                | L7    | Power System Data Models I                |         | LN      |
| 10 April               |       | Common Information Model                  |         |         |
| 13 -15                 |       | CIM-RDF schema                            |         |         |
| Q11                    |       |                                           |         |         |
| Thursday               | Ex2   | Java programming Exercise                 |         | LN      |
| 12 April               |       | • Recap of Java V                         |         | EC      |
| 13 – 15<br><b>P</b> 21 |       |                                           |         | FG      |
| B21<br>Monday          | το    | Dowor System Data Madala II               |         | I NI    |
| Monday<br>16 April     | L8    | Power System Data Models II               |         | LN      |
| 16 April<br>15-17      |       | Relational Databases                      |         |         |
| <b>Q11</b>             |       | • SQL                                     |         |         |
| Tuesday                | Ex3a  | Cim2MatPower Hands-On                     |         | FG      |
| 17 April               | Linou |                                           |         | 10      |
| 13-15                  |       | <b>N.B.</b> Pick one of these sessions    |         |         |
| Q11                    |       |                                           |         |         |

| Thursday      | Ex3b      | Cim2MatPower Hands-On                         | FG        |
|---------------|-----------|-----------------------------------------------|-----------|
| 19 April      |           |                                               |           |
| 15 -17        |           | <b>N.B.</b> Pick one of these sessions        |           |
| Q11           |           |                                               |           |
| Monday        | L9        | Power System Data Models III                  | L-O Ö     |
| 23 April      |           | Guest lecture by Mr Lars-Ola                  |           |
| 15 – 17       |           | Österlund from ENTSO-E                        |           |
| Q11           |           | 5                                             |           |
| Tuesday       | L10       | Power System Data Models IV                   | LN        |
| 24 April      |           | • Java and SQL – JDBC                         |           |
| 13 – 15       |           |                                               | FG        |
| Q13           |           |                                               |           |
| Thursday      | Ex4       | Java programming exercise                     | LN        |
| 26 April      |           | • Work on assignment.                         |           |
| 13-15         |           | • Teachers available in                       | FG        |
| Q11           |           | classroom                                     | 10        |
| Friday        | L11       | Machine Learning I                            | LN        |
| 27 April      |           | <ul> <li>Introduction and notation</li> </ul> |           |
| 10 - 12       |           |                                               | IZD       |
| Q11           |           |                                               | KP        |
| Thursday      | L12       | Machine Learning II                           | LN        |
| 3 May         |           | Decision trees                                | KP        |
| 10 - 12       |           |                                               | FG        |
| Q13           |           |                                               | ГG        |
| Friday        | L13       | Machine Learning III                          | KP        |
| 4 May         |           | • kNN algorithm                               | LN        |
| 15 – 17       |           |                                               | FG        |
| Q13           |           |                                               |           |
| Monday        | L14       | Machine Learning IV                           | KP        |
| 7 May         |           | • k-means clustering                          | LN        |
| 15 – 17       |           |                                               | FG        |
| ????????      |           |                                               |           |
| Tuesday       | L15       | Machine Learning V                            | KP        |
| 8 May         |           | Artificial Neural Networks                    | LN        |
| 13 – 15       |           | Concept & structure                           | FG        |
| Q13           |           |                                               |           |
| Monday        | Project 1 | Hand-in project #1                            |           |
| 14 May        |           |                                               |           |
| Monday        | L16       | Machine Learning VI                           | KP        |
| 14 May        |           | Artificial Neural Networks                    | LN        |
| 15 – 17       |           | Back & forward propagation                    | FG        |
| Q11           |           |                                               |           |
| Tuesday       | L17       | Machine Learning VII                          | KP        |
| 15 May        |           | • Q&A                                         | FG        |
| 13 – 15       |           | Work with exercises                           |           |
| Q13           |           |                                               | <br>T \ 7 |
| Thursday      | Test      | Voluntary Test                                | LN        |
| 17 May        |           | <b>N.B.</b> Starting time 13.00 sharp.        |           |
| 13.00 – 15.00 |           | Rooms: Velander & Herlitz                     |           |
| TR 33         |           |                                               |           |

| Monday  | Project 2 | Hand-in project #2 |  |
|---------|-----------|--------------------|--|
| 11 June |           |                    |  |

### Assessment & Grades

The grading of the course is based on the student achievements in the assignments and on the individual test.

- To pass the course, a student needs to successfully pass both project assignments. The projects are graded as *Fail, Pass* or *Pass with distinction*
- Passing each project gains the student 5 course points, for a total of 10 points for the projects. Students that pass the project with distinction, can gain up to 10 course points per project passed with distinction, for a maximum of 20 points total for both projects
- The voluntary test at the end of the course covers information modelling and machine learning. The test provides a potential additional 10 course points.

Grades are awarded depending on the sum of course points achieved according to the table below:

|       | 1      |
|-------|--------|
| Grade | Course |
|       | points |
| А     | 30     |
| В     | 25     |
| С     | 20     |
| D     | 15     |
| Е     | 10     |

### Course Literature

The course literature mainly consists of hand-outs provided during the course. A significant part of the course material is already available on-line, other parts will be provided in the course pages in Canvas.

#### Java Programming:

Please see course page MIT Open Courseware Introduction to Programming in Java, where you can find a wealth of programming reference material.

#### Information modelling.

"CIM for dummies", Alan McMorran, University of Strathclyde "Common Grid Model Exchange Standard (CGMES)" ENTSO-E (available online)

#### Databases

Excerpts from "Fundamentals of Relational Database Management Systems" by S. Sumathi, S. Esakkirajan (selected sections)

#### Machine Learning

Excerpts from "Automatic Learning techniques in Power Systems" by Louis Wehenkel (selected sections)

#### Course Staff

The following persons are active during the course

| Lars Nordström       | Course Responsible | larsno@kth.se   |
|----------------------|--------------------|-----------------|
|                      | Course Examiner    |                 |
| Francisco José Gomez | Course Assistant   | fragom@kth.se   |
|                      | Assignment 1       |                 |
| Kaveh Paridari       | Course Assistant   | paridari@kth.se |
|                      | Assignment 2       |                 |