

# Course memo, spring 2022 EI2410 Field Theory for Guided Waves (7,5 credits)

### 1 General and administrative

#### 1.1 Course information on the web

https://canvas.kth.se/courses/31135 (in Canvas: specific for this offering) https://www.kth.se/student/kurser/kurs/EI2410/ (course-plan)

### 1.2 Service center and student expedition

https://www.kth.se/eecs/studentsupport student-support@eecs.kth.se Here you get help with administrative matters.

## 1.3 Department

Electrical Engineering, Teknikringen 29-33

# 1.4 Course responsible, lecturer and examiner

Martin Norgren, 08-790 7410, mnorgren@kth.se

#### 1.5 Course material

Reading and practice (downloadable in Canvas):

- M. Norgren, Guided Electromagnetic Waves (course compendium TRITA-EECS-RP-2020:1). Available at Kårbokhandeln.
- Matlab scripts and other material
- Old exam problems

Examples of text books for additional reading:

- J. Van Bladel, Electromagnetic Fields, 2:nd ed
- R. E. Collin, Foundations for Microwave engineering, 2:nd ed
- D. M. Pozar, Microwave Engineering, 4:th ed

# 1.6 Course disposition

15 lessons, two project supervision sessions, and studies on your own.

# 2 Examination moments and grading criteria

## 2.1 Mandatory part

### 2.1.1 Project work (PROA; 1.5 credits; grades A, C, E, Fx, F)

- Carried out in groups of 2-3 students.
- Project topics will be presented towards end of April. Students may also propose topics.
- For passing grades, all group members must take active part in the presentation.

Grading criteria for the project work:

F Insufficient attempt or failed completion from Fx.

Fx The main subtask carried out incorrectly and/or a poor report.

E The main subtask carried out correctly and properly reported.

C The gross part of the subtasks carried out correctly and properly reported.

A All subtasks carried out correctly and properly reported.

### 2.1.2 Written exam (TENA; 6 credits; grades A-F)

Consists of four tasks, each centered around a certain topic from the course content, and divided into an (a)-part and a (b)-part:

(a) To demonstrate conceptual understanding of or prove general principles for guided waves. Marked with  $\{a_i = 0 - 5\}_{i=1}^4$  points. Generates exam points according to

$$P_{\rm a} = {\rm ceil} \left\{ 2 \left[ \frac{1}{4} \sum_{i=1}^{4} (a_i - 1) + \sqrt[4]{\prod_{i=1}^{4} (a_i + 1)} \right] \right\}$$

| Exam points $(P_a)$ | 0-12 | 13-14 | 15-20    |
|---------------------|------|-------|----------|
| Grade (TENA)        | F    | Fx    | ${ m E}$ |

**Table 1:** Grading criteria for passing the written exam.

(b) To demonstrate skills in quantitatively solving specific guided wave problems. Marked with  $\{b_i=0-5\}_{i=1}^4$  points. Generates exam points according to

$$P_{\rm b} = \operatorname{ceil} \left\{ 2 \left[ \frac{1}{4} \sum_{i=1}^{4} (b_i - 1) + \sqrt[4]{\prod_{i=1}^{4} (b_i + 1)} \right] \right\}$$

| Total exam points $(P_a + P_b)$ | 15-20 | 21-25 | 26-30 | 31-35 | 36-40 |
|---------------------------------|-------|-------|-------|-------|-------|
| Grade (TENA)                    | E     | D     | С     | В     | A     |

**Table 2:** Criteria for higher grades, awarded if grade E has been obtained in Table 1.

Allowed aids at the written exam:

- Råde & Westergren, Beta Mathematics Handbook and/or Spiegel, Mathematical Handbook of Formulas and Tables.

  Other handbooks may be used if approved by the examiner before the writing date.
- Compilation of formulas in electromagnetic theory (from the course home-page).
- The course compendium Guided Electromagnetic Waves TRITA-EECS-RP-2020:1

#### 2.1.3 Students with disability

Information under https://www.kth.se/en/student/studentliv/funktionsnedsattning

#### 2.1.4 Completion task

The grade Fx permits one attempt on a completion task to reach the grade E.

- For PROA, the completion task is in the feedback on the report.
- For TENA, the completion task is communicated via email.

#### 2.1.5 Course grade

|      |              | $\mathbf{TENA}$ |              |              |              |              |
|------|--------------|-----------------|--------------|--------------|--------------|--------------|
|      |              | ${f E}$         | D            | $\mathbf{C}$ | $\mathbf{B}$ | $\mathbf{A}$ |
| PROA | $\mathbf{E}$ | Е               | D            | С            | С            | В            |
| PROA | $\mathbf{C}$ | $\mathbf{E}$    | D            | $\mathbf{C}$ | В            | A            |
|      | $\mathbf{A}$ | D               | $\mathbf{C}$ | $\mathbf{C}$ | В            | A            |

**Table 3:** The course grade determined from the grades of PROA and TENA.

# 2.2 Optional part: homeworks

During the course offering there will be four homeworks, handled via Canvas according to the schedule therein.

- By topic area, each homework is related to an exam problem, but wider in scope.
- Marked with  $\{h_i = 0 5\}_{i=1}^4$  points.
- On the written exam, each  $a_i$ -point is replaceable with the corresponding  $h_i$ -point.

# 3 Schedule of course activities

| Week | Activity | Content                            | Chapters | Old exam problems   |
|------|----------|------------------------------------|----------|---------------------|
| 12   | L1       | Maxwell's equations.               | 1-4      |                     |
|      |          | Constitutive relations. Timehar-   |          |                     |
|      |          | monic fields. Field decomposition. |          |                     |
|      | L2       | Introduction to metallic waveg-    | 5.1-5.4  |                     |
|      |          | uides. Waveguide modes in the      |          |                     |
|      |          | time domain.                       |          |                     |
|      | L3       | Waveguide modes in the             | 5.5      | 081217:1, 170316:1  |
|      |          | frequency domain.                  |          | 180528:1, 210603:1  |
| 13   | L4       | Excitation and power transport.    | 5.6-5.7  | 071219:1, 081217:2  |
|      |          |                                    |          | 170316:2, 180528:2  |
|      |          |                                    |          | 190604:1, 200528:1a |
|      |          |                                    |          | 210603:2            |
|      | L5       | The mode-matching method.          | 5.8      | 071219:2 200528:2   |
|      | L6       | Attenuation of waveguide modes.    | 5.10     | 081217:3, 200528:1b |
| 14   | L7       | Catching up                        |          |                     |
|      | L8       | Cavity resonators                  | 6.1-6.3  | 170316:3, 200528:3  |
|      |          | - excitation of modes.             |          | 210603:3            |
|      | L9       | Cavity resonators                  | 6.4-6.6  | 190604:3            |
|      |          | - losses and bandwidth.            |          |                     |
| 17   | L10      | Introduction to dielectric         | 7.1-7.2  | 190604:2            |
|      |          | waveguides.                        |          |                     |
|      | L11      | The optic fiber.                   | 7.3-7.4  | 071219:5, 180528:3  |
|      |          |                                    |          | 210603:4            |
|      | L12      | Multiconductor transmission lines. | 8        | 071219:6, 081217:4  |
|      |          |                                    |          | 170316:4, 180528:4  |
|      |          |                                    |          | 190604:4, 200528:4  |
| 20   | PROA     | Presentations of project works     |          |                     |
| 22   | TENA     | Written exam                       |          |                     |

During the course offering, the schedule may undergo minor revisions.

Project supervision will take place during weeks 18-19, and will be planned off-schedule.

If (for any reason) a lesson or project supervision is held on-line, we use the following Zoom-room: https://kth-se.zoom.us/j/69612279287