Course PM: AF2610 Tunnel Engineering, 7.5 credits

Date: 2019-10-23

Course main content

The aim of the course is to provide students with: a broad knowledge in all aspects of tunneling i.e. planning, design and construction; and deeper knowledge in four areas of tunneling: (1) excavation with drilling and blasting method, (2) design of support (3) hydrogeology, water related problems and grouting and (4) tunnel cost and time planning and risk management.

Intended learning outcomes

After the course students will be able to:

- Identify main characteristics of different ground behaviour,
- Identify and plan tunnel excavation method from technical, production, and sustainability point of view,
- Design tunnel reinforcement based on empirical, analytical and numerical assessment depending on complexity and acquire a holistic perspective on the design process,
- Analyse water ingress to tunnels and identify possible water related problems for excavation, as well as plan and implement suitable tunnel draining and/or grouting methods,
- Analyse cost and time for ordinary tunnels based on risks and construction management principles.

Course Responsible and teacher

Almir Draganović,08 790 8026;

almir.draganovic@byv.kth.se

Teachers:

Fredrik Johansson	fredrik.johansson@byv.kth.se
Johan Spross	johan.spross@byv.kth.se
Gunnar Nord	gunnar.nord@bredband2.com
Hans Hogård	hans.hogard@skanska.se
Daniel Johansson	Daniel.Johansson@ltu.se
Tommy Ellison	TomEll@besab.se

Course Assistant

John Shamu Francisco Rios Bayona Mohammad Mohammadi jshamu@kth.se frrb@kth.se mmohamm@kth.se

Course Administrator:

Lena Kolmodin; lenako@kth.se

Students Office

Visit at: School of Architecture and Built Environment, Brinellvägen 23 Students Office: room M107A, Open at: Monday - Thursday 10.00 – 11.00 and 12.30 -13.30

Eligibility

AF2609, Foundation Engineering or equivalent

Recommended: AF 2602 Rock Mechanics, AF2024 Finite Element Methods

Literature

• Palmström and Stille: Rock Engineering

Bookstore "Kårbokhandel" sells the book. Address: Drottning Kristinas väg 15-19.

Additional recommended literature

- Hoek and Brown: Underground excavation in rock
- C.L: Jimeno, E.L. Jimeno and F.J.A. Carcedo: Drilling and Blasting of Rocks

Examination

- Passed written examination, 4.5 credits, grade scale: A-F, Fx
- Approved- assignments, 3 credits :
 - o (Assign. 1) Tunnel drilling and blasting, , grade scale: A-E, Fx
 - o (Assign. 2) Tunnel rock support analyzed with FEM, , grade scale: A-E, Fx
 - o (Assign. 3)Tunnel cost and time planning, , grade scale: A-E, Fx
 - $\circ~$ (Assign. 4)Ground water ingress and grouting, grade scale: A-E , Fx

Final grade:

Assessment of the final grade in the course is based on 1 written examination and 4 assignments. For the final grad the examination is weighted as 50 % and 4 assignments as 50 %. It means that a grade obtained in written examination is wort 4xgrade. For ex. obtained grade A in written examination is calculated as 4A, a B as 4B and so on in the assessment of final grade. A grade obtained in an assignment is calculated as 1xgarde. The total 8 grades are obtained.

If the student passed the exam with at least E, the final grade requirements are:

For A: Minimum 6 A, and no grade worse than C

For B: Minimum 6 B, and no grade worse than C

For C: Minimum 6 C, and no grade worse than E

For D: Minimum 6 D, and no grade worse than E

For E: All partial grades at least E

Note: assignment grades that have been upgraded from Fx to E after resubmission are counted as a normal E in the weighing.

If a student obtains Fx on the exam, E will be obtained as final grade if the student passes a supplementary exam and has at least E in the all assignments.

The assignments are done as group work. At the end of the course each group have to present one chosen assignment.

Examiner

Professor Stefan Larsson

Structure of reports for assignments

The report has to be structured as a scientific paper i.e. with chapter: Introduction, Material and Methods, Results, Discussion and Conclusion.

- Introduction: Introduction (description) of the assignments (problem).
- **Material and Methods**: Describe the methods / measurements / materials you have used to solve the problem.
- **Results:** Present your results.
- **Discussion**: Discuss the results. Compare with expected results? Did you reach the goal? Limitation during the work.
- Conclusion: ..., put it in the context, relate it to real case, ... etc

For inspiration see more about IMRAD structured of a scientific paper on this webpage <u>https://writing.wisc.edu/Handbook/ScienceReport.html</u>

Table 1: Grade criterion for AF2610 Tunnel Engineering

ILO	E	D	С	В	А		
1. Identify main	List some different		E+ describe some		C+ Discuss use of		
characteristics of	ground behaviour		different ground		proper design tool to		
different ground	2		behaviour and suggest		suggest possible rock		
behaviour			possible proper rock		support.		
			support.				
	Assessment through written examination.						
2. Identify and plan	Identify different		E+ discuss and justify		C+ A broad discussion		
tunnel excavation	parameters, perform		choice of different		about eventual		
method from technical,	calculation and plan		parameters and plan		problems and		
production and	one excavation cycle.		excavation cycles		assumptions in		
sustainability point of			including a grouting		calculations, related to		
view			cycle		a real case. Discuss the		
					choices (explosive,		
					borehole dimension		
					etc.) related to cost,		
					time and environmental		
					issues.		
	Assessment with assignment 1. Excavation method related to stability and productivity issues and sustainability issues are also						
	assessed through written examination.						
3. Design tunnel	Perform stability		E+ discuss and justify		C+ A broad discuss		
reinforcement based on	analysis with a		the reasons for choice		about eventual		
empirical, analytical	numerical design		of numerical method		problems, assumptions		
and numerical	method on a simple		(continuous vs.		in calculation related to		
assessment depending	case		discontinuous, elastic		some real cases.		
on complexity and			vs. plastic) and the				
acquire a holistic			used parameters				
perspective on design	Assessment through assignment 2. Empirical and analytical evaluation of support and holistic perspective on design are assessed						
process	through written examination.						
4. Analyse water	Make a simple		E+ Make a more		B+ Analyse possible		
ingress to tunnel. Plan	hydrogeological map of		detailed geological map		excavation and stability		
and implement proper	a tunnel. Divide tunnel		and detailed plan for		problems related to		
tunnel draining and/or	length in similar rock		grouting sections.		possible water issues.		
grouting method.	mass classes. Identify		Discuss choice		Discuss possible		

Identify possible water	possible fault zones.		continuous vs.		changes in planning of		
related problems for	Calculate water ingress		discontinuous model in		grouting in the		
excavation.	in the tunnels sections		estimation of water		construction stage.		
	and decide need for		ingress. Discuss				
	grouting.		influence of faults.				
	Assessment through assignment 3 and written examination.						
5. Analyse cost and	Prepare a tender		E+ Further instruction		C+ Further instruction		
time for ordinary	document based on a		from the teacher		from the teacher		
tunnels based on risks	simple case						
and construction	Assessment through assignment 4 and written examination.						
management principles							