
Course Analysis  
Compilers and Execution Environments (ID2202)


KTH Royal Institute of Technology 
School of Electrical Engineering and Computer Science (EECS) 

Examiner: David Broman

Course responsible: David Broman

Course analysis carried out by: David Broman (dbro@kth.se)

Course edition: Fall 2022 (Period 2)

Level and credits: Master’s level course, 7.5hp

Number of first registered students (according to Ladok): 46


1. Course Summary and Design 
This section gives a brief overview of the main parts of the course design, including course 
objectives, learning activities, and examinations. The course content and course objectives are 
based on the official course syllabus, whereas the explanation of learning activities and 
examinations are parts of the course memo. Below, we give a summary of these parts. We also 
give a brief overview of the main changes compared to previous course editions.


Course Content 
The course covers technologies for implementation of programming languages by means of 
compilers, both for real and virtual execution environments, technologies to read, understand, 
translate, improve as well as execute programs:


• To read programs: lexical analysis and syntax analysis. Finite state machines, regular 
expression context-free grammars, LL and LR-parsing.


• To understand programs: semantic analysis, type checking.

• To translate programs: machines and instructions.

• Intermediary code, choice of instructions, conventions for procedure calls.

• To improve programs: machine-independent optimizations; computer-oriented optimizations 

(register allocation, scheduling of instructions).

• To execute programs: virtual execution environments and runtime systems. Memory 

management, garbage collection, to load and link programs, just-in-time compilation.


Course Objectives 
After passing the course, the student shall be able to

• use methods for lexical, syntactic and semantic analysis

• use methods for generation of machine code

• use methods for optimizing programs

• give an account of common components in execution environments 


in order to

• obtain an understanding of how a programming language is implemented as well as for the 

general theories that are used and how these can be applied.


For higher grades, the student should design more complex components of a compiler. 


mailto:dbro@kth.se


Learning Activities 
The course is divided into three modules. Each module is two weeks long and covers a specific 
area:


• Module 1: Lexical Analysis, Syntax Analysis, and Semantic Analysis. 
The goal of module 1 is to comprehend, design, and implement the front end of a compiler, 
including lexing, parsing, and interpretation.


• Module 2: Code Generation and Runtime Environments. 
• The goal of module 2 is to compile complete unoptimized Cigrid programs to x86 machine 

code. Cigrid is a small language designed in this course for learning purposes.

• Module 3: Program analysis and optimizations. 

The goal of module 3 is to perform various optimizations of a compiler, including intermediate 
code optimization and register allocation. 


Besides the three main modules, there is also a Module 0, consisting of a crash course in 
functional programming.


Each module consists of the following learning activities (marked with LA) and formative 
examination tasks (marked with ET):


• Lectures (LA). Each module starts with three lectures. All lectures are given physically at KTH 
Kista, but are also streamed using Zoom.


• Hacking sessions (LA). Each week, there are two in-person hacking sessions at KTH Kista. 
During these sessions, the student is able to chat with fellow students, and to pose questions 
to teaching assistants.


• Assignments (LA/ET). During the 2-week module, the student works independently (not in 
groups) on different design and implementation tasks. It is possible to submit tasks 
continuously to the Git system developed for the course.


• Peer reviewing (LA/ET). At the beginning of the week, after a module, the student is given the 
task to peer review the code and the solutions of another fellow student. As part of this peer 
reviewing, the student provides comments and written questions about the other student's 
work. 


• Seminars (LA/ET). The week after each module, after the peer-reviewing task, the students 
participate in a seminar, where they present tasks and answer questions from a teaching 
assistant and the peer reviewing student. There are 2-3 students presenting during each 
seminar. The seminars take place over Zoom.


Examination 
The course has one course part (7.5hp) that is reported into Ladok when the course is completed. 
The grading scale is: A, B, C, D, E, FX, F. 


There is no written exam (summative assessment) at the end of this course. Instead, the 
examination is formative, where the students both show their level of acquired knowledge and 
skills, and where they are given a possibility for learning.


For each of the three modules in the course (see above), the student receives one of the following 
grades: Satisfactory (S), Good (G), Very Good (VG), or Failed (F). The final course grade is then in 
the end computed based on the three grades received for the three modules.


There is also a so-called deadline bonus, which makes it easier to receive a higher grade if the 
module is finished on time, on the first deadline. This gives the incentive for the students to focus 
on the course, learn during the scheduled working weeks, and to communicate with teaching 



assistants during these scheduled slots. The deadline bonus only helps to get higher grades; not 
to pass the course itself.


Each of the three modules are graded with one of the following grades, in the following way:


• Satisfactory (S): The student has fulfilled the following for the module:

• All assignments marked as (S) have been submitted to the Git correction system and 

all automatic tests pass.

• A teaching assistant has corrected tasks for (S) that cannot be automatically corrected 

and the results are pass.

• The student has sent in a peer reviewing assessment that is given the grade pass by a 

teaching assistant.

• The student has participated in a complete seminar, where they have acted as an 

opponent and asked questions based on the peer review.

• The student has presented his/her solution on a seminar, defended the 

implementation, and explained the solution in a satisfactory manner. The teaching 
assistant for the seminar has given the student pass on the oral presentation.


• Good (G): The student has fulfilled all criteria for (S) as well as submitted solutions to all 
assignments marked as (G). For all the tasks at level (G), the student has received a pass by 
either the automatic grading system or manually by a teaching assistant, or both. 


• Very Good (VG): The student fulfilled all criteria for (S) and (G), as well as submitted solutions 
to all assignments marked as (VG). For all the tasks at level (VG), the student has received a 
pass by either the automatic grading system or manually by a teaching assistant, or both. 


• Failed (F): The criteria for satisfactory (S) have not been fulfilled. 


Note that the tasks include both programming tasks, where the students’ solutions are 
automatically corrected (using a Git-based unit testing system developed for this course), as well 
as manual correction by teaching assistants (mainly focusing on theoretical exercises).


Changes Since the Last Edition 
This is the third course edition for ID2202 that has been taught by the course responsible and 
examiner David Broman. Since the last year, there have been certain adjustments in the course, 
including:


• OCaml crash course. A new addition to last year’s course round was that we have a one-
week crash course on OCaml, to get everyone up to speed from the start. The focus is on 
typed functional programming and its usefulness when developing compilers. A change this 
year was that we made module 0 compulsory, which resulted in the students starting earlier 
with the implementation this year.


• Workload. To lower the workload, we removed some of the exercises in Module 1 and 
rearranged them to lower the workload, especially in the first parts of the course.


2. Course Evaluation Process 
In this section, we briefly outline how we gathered course feedback from the students and how 
we adjusted, reacted, and used the received feedback.


Evaluation Activities 
During the course, the following evaluation activities were planned and/or took place.


• All students were strongly encouraged to send emails to the examiner with feedback. In 
particular, in some instances, we asked explicit questions to the students that they later on 
answered. By having direct contact with most students who took the course actively, we were 
able to adapt and make the course better during the course.


• After the course, we sent out the usual web-based course evaluation form. As expected, we 
received a pretty low answer rate: 6 answers out of 46 registered students. 




• We also had informal feedback meetings after lectures. I also received many emails with very 
constructive feedback and comments.


All students had the possibility to give feedback, either anonymously via the web-based course 
evaluation system, or directly via email or Zoom. In the beginning of the course, we asked to get 
volunteers for the course committee.


Meetings with Students 
This year, we have not yet had a course committee meeting, but an extra meeting is planned for 
the fall 2023, before the next course edition. For the 2023 course edition, we will combine this 
course with the compiler course taught at the main campus. For this reason, we will have an extra 
course committee meeting with students from both courses to get feedback on the new 
development.


During the course, I had quite extensive communication with several students over email. 
Feedback from students has played a significant role when shaping both this version of the 
course, and as input for improvements for next year. 


Gender, Diversity, and Disability Aspects 
There were significantly more male than female students who took this course. It is, in general, an 
elective course that is available in many programs. Many students gave feedback during the 
course, both orally and via email. In the course memo, we have provided information about Funka 
students and that the students can contact the examiner for information about what kind of 
support we can provide regarding disability.


3. Outcomes 
This section summarizes the students’ results during this course round, the expected and 
experienced student workload, and a general summary of student responses. The responses 
reflect personal student feedback and anonymous feedback sent via the web-based course 
evaluation.


Student Results 
In total, there were 46 students registered according to Ladok. 42 students submitted a solution 
to module 0 (auto-corrected), and out of these, 28 students submitted at least one complete 
module that included getting a pass on a seminar. In total, 22 students received a final course 
grade within this course round. 


Besides the ID2202 students, one more Ph.D. student successfully finished the Ph.D. course 
version FID3006. The grade distribution (excluding FID3006) of the passed students was as 
follows (rounded numbers):


A: 9% (2 students)

B: 5% (1 student)

C: 5% (1 student)

D: 23% (5 students)

E: 59% (13 students)


This year, the grades were slightly higher than the previous year. 




Student Workload 
In the web-based course evaluation, the students answered that they worked between 12h per 
week to 38h per week. The students generally said that the workload was high, especially module 
1. Note that this course is 7.5hp and studied during one period, that is, half-time studies. Some 
students thought it was too high, whereas other students thought it was as expected.


Student Responses 
The web-based student responses resulted in the following Learning Experience Questionnaire 
(LEQ)-diagram for years 2021 and 2022:


                          	 	                                                       


The 2022 edition has changed slightly; some areas are lower than in previous years. Note, 
however, that this is a very small sample of the students. Only six students answered the LEQ 
questionnaire. 


Below, we have summarized the main feedback from the student responses:


• Item 19 "The course activities enabled me to learn in different ways" is a bit lower than last 
year. The raw data show that all responding students are positive, except one negative 
student, who thought the structure was repetitive. On the other hand, most other students 
seem very positive. 


• Item 17 "My background knowledge was sufficient to follow the course" is a bit lower this 
year. The main thing that some students say is that they did not know functional programming 
before. In general, several students do not have a computer science background, in which 
case the course can be challenging.


• Some students said that the structure of the course was excellent, enabling students to work 
at their own pace. 


• The main comment was that the workload was high, especially at the beginning of the course. 
Some students suggested fewer and easier tasks.


• Many students answered that they liked the assignments and the possibility of creating a 
compiler of their own. 


Year 2021 Year 2022



• Some students thought that we should have even more details in the lectures.

• Many students were pleased with the hacking sessions.

• Several students appreciated the videos.

• In general, it seems like most students were satisfied with the course.


4. Analysis and Planned Course Development 
From the outcome given in the previous section, we can conclude that most students enjoy the 
course, but they also find it quite challenging. In this section, we discuss and analyze some of the 
key student feedback. We propose changes and improvements for the next year’s course 
development for each of the different areas.


Background knowledge and workload 
This year, we got similar responses as last year, that several students found the course 
challenging and required a lot of effort. Given the struggle some students found in the early 
programming exercises, it is still clear that many students do not have the expected computer 
science background that is actually required for the course. 


We introduced both a crash course in OCaml and reduced the workload on some of the exercises 
in Module 1. Also, since the next year’s edition will combine this course with the one taught at the 
main campus, we will make some changes and updates.  

For next year, we plan to do the following main updates:


• Crash course. We will keep the crash course that we introduced this year. We will, however, 
offer the crash course both for OCaml and Scala. Students can then choose which language 
they will use. They can also use Java, C++, and more, but there will be no specific crash 
courses. 


• Videos. We will continue to add more tutorial videos since this has been very appreciated as a 
complement to the lectures.


• New content. New content. We will extend the course with more material on JVM as a target 
language. There will also be slight changes in the lecture material. However, since the 
feedback has generally been very good over the years regarding lectures, seminars, exercises, 
and examinations, we will not make major changes.


• Workload.  We will consider further reducing the workload, especially in module 1.


Conclusions 
To conclude, the course has been well-received over the years. The main challenge for next year 
is to reduce the workload slightly while introducing some new material from the other course. We 
also note that the final grades achieved by the students were slightly higher this year. In summary, 
we are delighted that the course is appreciated, and we hope to make it even better next year.



	Course Summary and Design
	Course Content
	Course Objectives
	Learning Activities
	Examination
	Changes Since the Last Edition

	Course Evaluation Process
	Evaluation Activities
	Meetings with Students
	Gender, Diversity, and Disability Aspects

	Outcomes
	Student Results
	Student Workload
	Student Responses

	Analysis and Planned Course Development
	Conclusions

